skip to main content


Search for: All records

Creators/Authors contains: "Kash, Ian A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Group fairness definitions such as Demographic Parity and Equal Opportunity make assumptions about the underlying decision-problem that restrict them to classification problems. Prior work has translated these definitions to other machine learning environments, such as unsupervised learning and reinforcement learning, by implementing their closest mathematical equivalent. As a result, there are numerous bespoke interpretations of these definitions. This work aims to unify the shared aspects of each of these bespoke definitions, and to this end we provide a group fairness framework that generalizes beyond just classification problems. We leverage two fairness principles that enable this generalization. First, our framework measures outcomes in terms of utilities, rather than predictions, and does so for both the decision-maker and the individual. Second, our framework can consider counterfactual outcomes, rather than just observed outcomes, thus preventing loopholes where fairness criteria are satisfied through self-fulfilling prophecies. We provide concrete examples of how our utility fairness framework avoids these assumptions and thus naturally integrates with classification, clustering, and reinforcement learning fairness problems. We also show that many of the bespoke interpretations of Demographic Parity and Equal Opportunity fit nicely as special cases of our framework.

     
    more » « less
    Free, publicly-accessible full text available September 13, 2024
  2. In the context of subscription-based services, many technologies improve over time, and service providers can provide increasingly powerful service upgrades to their customers but at a launching cost and the expense of the sales of existing products. We propose a model of technology upgrades and characterize the optimal pricing and timing of technology introductions for a service provider who price-discriminates among customers based on their upgrade experience in the face of customers who are averse to switching to improved offerings. We first characterize optimal discriminatory pricing for the infinite horizon pricing problem with fixed introduction times. We reduce the optimal pricing problem to a tractable optimization problem and propose an efficient algorithm for solving it. Our algorithm computes optimal discriminatory prices within a fraction of a second even for large problem instances. We then show that periodic introduction times, combined with optimal pricing, enjoy optimality guarantees. In particular, we first show that, as long as the introduction intervals are constrained to be nonincreasing, it is optimal to have periodic introductions after an initial warm-up phase. When allowing general introduction intervals, we show that periodic introduction intervals after some time are optimal in a more restricted sense. Numerical experiments suggest that it is generally optimal to have periodic introductions after an initial warm-up phase. Finally, we focus on a setting in which the firm does not price-discriminate based on customers’ experience. We show both analytically and numerically that in the nondiscriminatory setting, a simple policy of Myerson (i.e., myopic) pricing and periodic introductions enjoys good performance guarantees. Funding: This material is based upon work supported by INSEAD and University Pierre et Marie Curie [Grant ELICIT], as well as by the National Science Foundation [Grant 2110707]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2022.2364 . 
    more » « less
  3. We consider the problem of detecting norm violations in open multi-agent systems (MAS). We show how, using ideas from scrip systems, we can design mechanisms where the agents comprising the MAS are incentivised to monitor the actions of other agents for norm violations. The cost of providing the incentives is not borne by the MAS and does not come from fines charged for norm violations (fines may be impossible to levy in a system where agents are free to leave and rejoin again under a different identity). Instead, monitoring incentives come from (scrip) fees for accessing the services provided by the MAS. In some cases, perfect monitoring (and hence enforcement) can be achieved: no norms will be violated in equilibrium. In other cases, we show that, while it is impossible to achieve perfect enforcement, we can get arbitrarily close; we can make the probability of a norm violation in equilibrium arbitrarily small. We show using simulations that our theoretical results, which apply to systems with a large number of agents, hold for multi-agent systems with as few as 1000 agents–the system rapidly converges to the steady-state distribution of scrip tokens necessary to ensure monitoring and then remains close to the steady state. 
    more » « less